A model for the nucleotide-binding domains of ABC transporters based on the large domain of aspartate aminotransferase

Author(s):  
Flip J. Hoedemaeker ◽  
Alan R. Davidson ◽  
David R. Rose
2004 ◽  
Vol 279 (19) ◽  
pp. 19781-19789 ◽  
Author(s):  
Junkang Xu ◽  
Yang Liu ◽  
Youyun Yang ◽  
Susan Bates ◽  
Jian-Ting Zhang

Human ATP-binding cassette G2 (ABCG2, also known as mitoxantrone resistance protein, breast cancer-resistance protein, ABC placenta) is a member of the superfamily of ATP-binding cassette (ABC) transporters that have a wide variety of substrates. Overexpression of human ABCG2 in model cancer cell lines causes multidrug resistance by actively effluxing anticancer drugs. Unlike most of the other ABC transporters which usually have two nucleotide-binding domains and two transmembrane domains, ABCG2 consists of only one nucleotide-binding domain followed by one transmembrane domain. Thus, ABCG2 has been thought to be a half-transporter that may function as a homodimer. In this study, we characterized the oligomeric feature of human ABCG2 using non-denaturing detergent perfluoro-octanoic acid and Triton X-100 in combination with gel filtration, sucrose density gradient sedimentation, and gel electrophoresis. Unexpectedly, we found that human ABCG2 exists mainly as a tetramer, with a possibility of a higher form of oligomerization. Monomeric and dimeric ABCG2 did not appear to be the major form of the protein. Further immunoprecipitation analysis showed that the oligomeric ABCG2 did not contain any other proteins. Taken together, we conclude that human ABCG2 likely exists and functions as a homotetramer.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lilia I. De la Torre ◽  
José G. Vergara Meza ◽  
Sindy Cabarca ◽  
André G. Costa-Martins ◽  
Andrea Balan

Abstract Background Mycobacterium tuberculosis, the etiological agent of tuberculosis, has at least four ATP-Binding Cassette (ABC) transporters dedicated to carbohydrate uptake: LpqY/SugABC, UspABC, Rv2038c-41c, and UgpAEBC. LpqY/SugABC transporter is essential for M. tuberculosis survival in vivo and potentially involved in the recycling of cell wall components. The three-dimensional structures of substrate-binding proteins (SBPs) LpqY, UspC, and UgpB were described, however, questions about how these proteins interact with the cognate transporter are still being explored. Components of these transporters, such as SBPs, show high immunogenicity and could be used for the development of diagnostic and therapeutic tools. In this work, we used a phylogenetic and structural bioinformatics approach to compare the four systems, in an attempt to predict functionally important regions. Results Through the analysis of the putative orthologs of the carbohydrate ABC importers in species of Mycobacterium genus it was shown that Rv2038c-41c and UgpAEBC systems are restricted to pathogenic species. We showed that the components of the four ABC importers are phylogenetically separated into four groups defined by structural differences in regions that modulate the functional activity or the interaction with domain partners. The regulatory region in nucleotide-binding domains, the periplasmic interface in transmembrane domains and the ligand-binding pocket of the substrate-binding proteins define their substrates and segregation in different branches. The interface between transmembrane domains and nucleotide-binding domains show conservation of residues and charge. Conclusions The presence of four ABC transporters in M. tuberculosis dedicated to uptake and transport of different carbohydrate sources, and the exclusivity of at least two of them being present only in pathogenic species of Mycobacterium genus, highlights their relevance in virulence and pathogenesis. The significant differences in the SBPs, not present in eukaryotes, and in the regulatory region of NBDs can be explored for the development of inhibitory drugs targeting the bacillus. The possible promiscuity of NBDs also contributes to a less specific and more comprehensive control approach.


2004 ◽  
Vol 385 (10) ◽  
pp. 927-933 ◽  
Author(s):  
Chris Van Der Does ◽  
Robert Tampé

Abstract Members of the ATP-binding cassette (ABC) superfamily are integral membrane proteins that hydrolyze ATP to drive transport. In the last two decades these proteins have been extensively characterized on a genetic and biochemical level, and in recent years high-resolution crystal structures of several nucleotide-binding domains and full-length transporters have extended our knowledge. Here we discuss the possible mechanisms of transport that have been derived from these crystal structures and the extensive available biochemical data.


2000 ◽  
Vol 20 (22) ◽  
pp. 8298-8304 ◽  
Author(s):  
Jiyeon Kwak ◽  
Myeong Hyeon Wang ◽  
Sun Wook Hwang ◽  
Tae-Yoon Kim ◽  
Soon-Youl Lee ◽  
...  

Diabetes ◽  
2004 ◽  
Vol 53 (Supplement 3) ◽  
pp. S123-S127 ◽  
Author(s):  
J. D. Campbell ◽  
P. Proks ◽  
J. D. Lippiat ◽  
M. S.P. Sansom ◽  
F. M. Ashcroft

Sign in / Sign up

Export Citation Format

Share Document